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ABSTRACT: North Alabama is among the most tornado-prone regions in the
United States and is composed of more spatially variable terrain and land cover
than the frequently studied North American Great Plains region. Because of the
high tornado frequency observed across north Alabama, there is a need to un-
derstand how land surface roughness heterogeneity influences tornadogenesis,
particularly for weak-intensity tornadoes. This study investigates whether hori-
zontal gradients in land surface roughness exist surrounding locations of torna-
dogenesis for weak (EF0–EF1) tornadoes. The existence of the horizontal
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gradients could lead to the generation of positive values of the vertical components
of the 3D vorticity vector near the surface that may aid in the tornadogenesis
process. In this study, surface roughness was estimated using parameterizations
from the Noah land surface model with inputs from MODIS 500-m and Landsat
30-m data. Spatial variations in the parameterized roughness lengths were as-
sessed using GIS-based grid and quadrant pattern analyses to quantify observed
variation of land surface features surrounding tornadogenesis locations across
spatial scales. This analysis determined that statistically significant horizontal
gradients in surface roughness exist surrounding tornadogenesis locations.

KEYWORDS: Atmosphere–land interaction; Boundary layer; Geographic
information systems (GIS); Land surface; Tornadoes; Tornadogenesis

1. Introduction
The United States leads the world in tornado occurrence, averaging around 1000

events recorded annually (NCEI 2016). Within the United States, some locations
experience a disproportionately higher frequency of tornadoes, which poses a
higher risk to inhabiting citizens who suffer from the economic and societal im-
pacts. North Alabama is one of these locations found by Coleman and Dixon
(2014) to be among the most at risk areas for significant tornadoes [enhanced Fujita
scale 2 (EF2) and greater] in the country. In addition, north Alabama has suffered
from the most prolific tornado outbreaks in recorded history including the 3 April
1974 and 25–27 April 2011 outbreaks (Knupp 2014).

Within north Alabama, the NOAA National Weather Service Weather Forecast
Office (WFO) operational forecasters, broadcast meteorologists, private industry
weather companies, and the public have observed spatial patterns in tornado dis-
tribution and frequency. A spatial density map generated using the NOAA Severe
Weather GIS (SVRGIS) dataset EF0–EF5 tornado tracks observed within the
University of Alabama in Huntsville (UAH) operated Advanced Radar for Mete-
orological and Operational Research (ARMOR) coverage area is shown in Figure 1
(NOAA 2015). For tornado events captured prior to the 1973 enactment of the
Fujita scale, tornado intensity was determined according to a property loss
threshold if monetary damage information was available (NOAA 2015). In 2007
when the EF scale began being used, the Fujita scale rankings were converted to the
EF scale and catalogued within the dataset. The generated map indicates two areas
with high densities, or high frequencies of tornadoes for a given area. One area is
located over north-central Alabama into southern Tennessee, while a second is
located over the Cumberland Plateau extending into Marshall, Jackson, and
DeKalb Counties. Compared to the frequently studied Great Plains region, north
Alabama has greater variability in topography and vegetation, posing questions on
how the lowest several hundred meters of the atmosphere, that is, the surface layer
to lower boundary layer are influenced by horizontal gradients in the land surface
roughness and how the tornadogenesis process may be affected.

Tornadogenesis occurs within both supercell storms and quasi-linear convective
systems (QLCS). Since a significant majority of high-intensity (EF2–EF5) tornadoes
occurs within supercell storms, previous research has focused on the development
of low-level vertical vorticity within supercell storms via horizontal gradients in
buoyancy at low levels (Davies-Jones 2015; Markowski et al. 2018, and references
cited therein). The development of mesovortices within QLCSs has also been related
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to the development of horizontal gradients in buoyancy (Atkins and Laurent 2009),
development of rotors by surface friction (Schenkman et al. 2012), and horizontal
shearing instability (Conrad and Knupp 2019). This study focuses on weak-intensity
tornadoes (EF0–EF1) since they are more numerous and are potentially influenced by
horizontal variations in land surface roughness, according to the primary hypothesis
defined in the following. For both storm types, Markowski et al. (2018, p. 3623) has
stated, ‘‘A better understanding is needed of what can trigger a storm in a favorable
environment to suddenly make a tornado at a particular stage in its evolution.’’

Decades of land surface remote sensing, tornado event observations, and geospatial
tools enable variations in land surface features and tornado events to be assessed
geostatistically as a first step toward characterizing how they affect tornadogenesis.
This study integrates land surface remote sensing parameters, tornadogenesis loca-
tions, geospatial analysis, and the vertical component of the 3D vorticity equation to
propose a novel, interdisciplinary approach to studying spatial relationships between
land surface roughness variation and tornadogenesis. The goal of this study was to

Figure 1. Tornado-track density for all EF0–EF5 tornadoes that occurred across
counties intersecting the ARMOR coverage area from 1950 to 2014. This
map reveals two areas with high frequencies of tornado occurrences for
a given area. One area is located over north-central Alabama into
southern Tennessee. The second area is located in the Cumberland
Plateau extending into Marshall, Jackson, and DeKalb Counties.
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determine whether horizontal gradients in land surface roughness exist in the sur-
rounding locations of tornadogenesis for weak (EF0–EF1) tornadoes. The existence of
the horizontal gradients could lead to the generation of positive values of the vertical
components of the 3D vorticity vector near the surface in the lowest several hundred
meters of the atmosphere (surface layer to lower boundary layer) that may aid in the
tornadogenesis process. We accomplish this goal by 1) parameterizing surface
roughness using satellite remote sensing and land surface model schemes, 2) running a
spatial pattern analysis to assess spatial roughness variation surrounding locations
of tornadogenesis, 3) conducting a quadrant pattern analysis to statistically identify
significant relationships between horizontal roughness gradients and tornadogenesis
locations, and 4) conduct this study using 30- and 500-m land surface data to assess if
the same patterns are observed at varying spatial scales. The developedmethods present
a comprehensive and novel GIS-based approach for quantifying variations in surface
friction using land surface roughness parameterization schemes and spatially assessing
its variation in north Alabama surrounding EF0–EF1 tornadogenesis locations.

2. Background

2.1. Defining roughness length

Land surface roughness is a measure of the dynamic interaction between the
land surface and the wind profile near the surface used to quantify the reduction in
wind speed by drag force and friction (Raupach 1994; Holton 2004). The rough-
ness of the land surface depends on the vertical deviation from an ideal, homo-
geneous surface at neutral stability created by variable land cover and topography.
Within the logarithmic wind profile equation, the roughness length term z0 is
quantified in units of length. Equation (1) shows the terms of the logarithmic wind
profile equation rearranged to equate to z0 (m):

z05 z exp[2ku(z) u21
* ], (1)

where u(z) is the mean flow velocity profile (m s21) over a surface, u
*
is the friction

velocity (m s21), k is the von Kármán constant (0.4), and z is the height above
ground level (m). The friction velocity u

*
shown in Equation (2) accounts for

shearing stress near the ground:

u*5

ffiffiffi
t

r

r
, (2)

where t is the shear stress (kgm21 s22), and r is the density of a fluid (kgm23).
The larger the value of z0, the greater amount of frictional drag exerted on air
moving over the land surface, thus corresponding to reduced wind shear.

2.2. Vorticity and tornadogenesis

Between areas with different magnitudes of z0 there exist horizontal gradients in
low-level flow moving over these surfaces that are most notable between areas of
high (forest) and low (water, smooth grass surfaces) z0. Coleman and Knupp (2009)
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proposed that when surface winds move over heterogeneous land surfaces where
the gradient in z0 is located normal to the direction of low-level flow (lowest several
hundred meters of the atmosphere), then positive vertical vorticity could be pro-
duced above the surface. This process produces nonzero values of the vertical
component of the 3D vorticity vector at the surface that may enhance tornado-
genesis. Similar interactions create turbulent eddies and mixing when water or air
moves over obstacles such as trees, buildings, and rocks that induce frictional drag
on the fluid (air, water) creating small vortices (Stull 1988; Bou-Zeid et al. 2004).
This can be explained mathematically by the friction term in the simplified vertical
component of the 3D vorticity equation z (Bluestein 1992):

Dz

Dt
5 k̂ � =3Ffriction, (3)

where all other terms are assumed to be zero, k̂ is the vertical unit vector, and
=3Ffriction is the curl of the friction force (Coleman and Knupp 2009). Figure 2
illustrates this process, where =z0 represents the horizontal gradient in z0 along a
rough forested area (z05 0.5m) adjacent to a smoother grassland (z05 0.1m) area.
The arrows represent differing velocity vectors and the resultant curl of the friction
force as low-level flow moves over the area with a horizontal gradient in z0. The
resultant curl, shown by the curved arrow, indicates a location where tornado-
genesis could be aided.

Although both the horizontal and vertical components of the vorticity vector
require consideration, we focus herein on the generation of the vertical component
of vorticity z within the lowest several hundred meters of the atmosphere, that is,

Figure 2. Schematic showing the proposed interaction. A forested (high z0, rougher)
area neighbors a grassy (low z0, smoother) area. The relative difference in
z0 creates a horizontal gradient along the two land-cover types at the
surface, perpendicular to the direction of flow. The resultant curl of the
friction force, depicted by the curved arrow, as low-level flow moves over
the area with a horizontal gradient could aid in tornadogenesis.
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the surface layer to lower boundary layer. It is recognized that the magnitude of
horizontal vorticity associated with vertical wind shear, and z within supercell
mesocyclones or QLCS mesovortices, is 1022 s21. The magnitude of z produced
by horizontal gradients in z0 associated with a water–land interface, documented
by Asefi-Najafabady et al. (2010) for a moderate wind case (e.g., 5m s21 wind
speed), can exceed 1023 s21 over a significant depth of the ABL (Figure 3). This
value could conceivably approach 53 1023 s21 for stronger surface-layer flow on

Figure 3. Hourly time averages of vertical vorticity derived from a dual-Doppler
analysis of a lake breeze. (top) Horizontal flow perturbation vectors and
vertical vorticity at 250-m height. (bottom) A vertical section of vorticity
along y 5 210. Black vertical solid lines indicate the lake boundaries
within the vertical section. The mean boundary layer flow was about
5ms21 from about 3108, approximately parallel to the lake axis. Taken
from Asefi-Najafabady et al. (2010).
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much smaller scales on the order of 100m. For example, a surface-layer wind
differential of 5m s21 over a 500-m horizontal scale yields a z magnitude of
1022 s21. Values of around this magnitude are common along the leading edge of
QLCSs, and within some well-defined cold fronts and outflow boundaries asso-
ciated with mesocyclones (Marquis et al. 2007).

Laboratory simulations and numerical modeling studies have also investigated
the influence that land surface roughness heterogeneities have exerted on surface
flow, and have demonstrated that changes in the land surface contribute to pro-
duction of vorticity and generation of tornado-like flows, illustrating a need for
further investigation (Dessens 1972; Avissar and Pielke 1989; Natarajan and
Hangan 2009; Kellner and Niyogi 2014; Liu and Ishihara 2016; Wang et al. 2017).

2.3. Methods to derive z0

Approaches to derive and represent z0 for research and modeling purposes in-
clude using lookup tables, satellite-derived land surface and vegetation parameters,
and hybrid approaches. Traditional atmospheric modeling techniques implement
lookup tables that equate a land-cover class to a representative z value derived from
field observations (Borak et al. 2005; Jasinski et al. 2006; Zheng et al. 2014). These
approaches fail to capture variation within land-cover classes and account for
seasonal vegetation changes, resulting in errors in heat fluxes and skin temperature
values used in weather forecasting models (Zheng et al. 2014). Alternatively, re-
mote sensing methods have been used to relate satellite observations and ancillary
data to better capture the spatial and temporal variability of z0. Hybrid approaches
using the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation
indices and lookup tables have been proposed by Wu et al. (2015), Borak et al.
(2005), Jasinski et al. (2006), and Jasinski et al. (2005). Backscatter caused by
variation in the land surface measured by spaceborne radiometers, such as
QuikSCAT, have been used to quantify roughness (Goodberlet and Mead 2014;
Bergen et al. 2009). Zhang et al. (2004) implemented a multisensor approach using
RADARSAT synthetic aperture radar (SAR), Landsat 5 Thematic Mapper (TM)
and Landsat 7 Enhanced Thematic Mapper Plus (ETM1) data. The SAR and lidar
data approaches have been developed to capture the roughness of land-cover types
such as bare soil, ice, and urban areas, which are difficult to model (Chen et al.
2009; Rees and Arnold 2006; Rivas et al. 2006).

Atmospheric models implement z0 parameterization schemes to account for
energy transfer and interaction between the land surface and atmosphere using
lookup table values and satellite retrievals. The Noah land surface model (LSM)
(Chen et al. 1996; Ek et al. 2003) is widely used as the land surface component for
regional and global weather forecasting models at the National Centers for Envi-
ronmental Prediction and by the Weather Research and Forecasting (WRF) Model
at the National Center for Atmospheric Research (Zheng et al. 2014). The Noah
LSM parameterization scheme may fail to accurately capture z0 ranges given its
reliance on land-class-based lookup table values and time-series-derived z0 ranges,
which in some cases offer constant values of land-cover classes. Nevertheless, the
Noah LSM scheme was used to quantify z0 across the study area because it offers a
hybrid approach using land surface remote sensing data and lookup table values
that are implemented widely across modeling applications, and accounts for
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seasonal vegetation variation (Zheng et al. 2014; Chen and Zhang 2009; Ek et al.
2003; Niu et al. 2011).

2.4. Study area and period

The ARMOR is a scanning dual-polarimetric Doppler radar operated by the
UAH Department of Atmospheric Science (University of Alabama in Huntsville
2004). ARMOR is located at the Huntsville International Airport and typically
scans a 120-km range across north Alabama and portions of Tennessee and
Georgia. The study area (Figure 4) is located west of the southern Appalachian
Mountains covering portions of the Cumberland Plateau and Tennessee River
valley with topography ranging approximately 80–700m in elevation.

The study area is classified as humid subtropical under the Köppen climate
classification scheme (Kottek et al. 2006). During the March–May severe weather
season, the climate is warm and humid with average 3-month temperatures near
608F and a relative humidity of 70% (NCDC 2018). In the fall and, primarily, the
spring, severe weather and tornadoes are most prevalent; however, thunderstorms

Figure 4. The area of focus for this study spans across the ARMOR coverage area.
The black dot indicates the location of the ARMOR, and the red circle
outlines its 120-km scan range.
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occur throughout the summer with 50–60 thunderstorm days observed each year
(Burt and Stroud 2007). During the spring tornado months, conditions are very
dynamic with respect to the emergence of vegetation following the winter months.
The tornado events used in this study (shown in Figure 4 as inverted triangles)
included all tornadoes that occurred within 120 km of the ARMOR radar over the
2005–14 period during March–May, the climatological peak in tornado occurrence
within the state of Alabama (NWS 2018).

3. Data and methods
This study combines geospatial data, satellite remote sensing retrievals, and the

Noah LSM parameterization scheme to capture z0 variation within the ARMOR
coverage area and assesses its relationship to tornadogenesis locations of weak-
intensity tornadoes (EF0–EF1). The selected datasets represent locations of tor-
nadogenesis, land cover, and vegetation cover. The Noah LSM was used to
parameterize z0, followed by a geostatistical analysis to assess the spatial re-
lationships between tornadogenesis locations and z0 variability. A z0 layer was
created at two spatial resolutions to assess relationships between larger-scale
(500m) and smaller-scale features (30m) surrounding tornadogenesis locations.
An overview of the data and methods used in this study is shown in Figure 5 and
outlined in the proceeding section.

3.1. Tornado database

The NOAA Storm Prediction Center (SPC) SVRGIS tornado-track dataset
(NOAA 2015) and the unpublished UAH Department of Atmospheric Science
tornado event catalog (University of Alabama in Huntsville 2014, unpublished
material, accessed 1 June 2014) were used to identify tornadogenesis locations and
information on maximum tornado intensity, wind speed, fatalities, and injuries.
Each dataset is compiled from National Weather Service storm reports; however,
the UAH catalog is a spatial and temporal subset of the SVRGIS dataset containing

Figure 5. Flowchart showing the data preprocessing, Noah LSM parameterization
scheme, and statistical approaches implemented in this study.
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only tornado events that initiated within the ARMOR radar coverage area from
2005 to 2014. These two datasets were quality controlled by cross comparing event
information to identify errors before plotting the tornadogenesis point locations.
The points were then filtered to identify EF0–EF1 tornadogenesis events during the
study period that initiated within the study area, leaving 131 tornadogenesis points.

Several tornadoes produced during the 25–27 April 2011 tornado outbreak and
other events left behind tornado scars (long-lasting damage to vegetation, espe-
cially trees) that greatly altered the land cover and were captured by the MODIS
and Landsat retrievals. The z0 parameterization scheme is dependent on repre-
sentative land cover and vegetation for the spring tornado seasons of 2006 and
2011, thus tornadogenesis locations occurring between 2005 and 2008 correspond
to 2006 land cover and those occurring between 2009 and 2014 correspond to 2011
land cover. Changes to the underlying land features affect the accuracy of the z0
representation particularly for tornadogenesis events that occurred before the tor-
nado scars were made and captured within the 2011 land cover (from 2009 to 27
April 2011), thus, it was necessary to correct for these changes in z0. The NOAA
geospatial tornado-track survey data for 25–27 April 2011 produced by NWS
Birmingham (2011) offers detailed tornado swath information. These data were
used to identify significant (EF4–EF5) tornado events that occurred within 0–4 km
of a tornadogenesis location. Tornadogenesis events within the 2011 sample group
occurring from 2009 to 27 April 2011 within a 4-km area of a significant tornado
event were omitted from this study. A total of 6 tornadoes from the 2011 sample
group were removed reducing the final sample size to 125 tornadogenesis points.

3.2. Land cover and reclassification

Data acquired from the Multi-Resolution Land Characteristics Consortium
(MRLC) National Land Cover Database (NLCD) served as the high-resolution 30-
m land-cover layer (Homer et al. 2011; Fry et al. 2006). NLCD data are derived
from Landsat imagery and use a 16-class land-cover classification scheme based on
the Anderson et al. (1976) scheme containing an accuracy of 84% (Wickham et al.
2013). Spatial variations in land-cover type are minimal seasonally and annually,
thus NLCD land cover is produced in 5-yr intervals. The 2006 and 2011 datasets
provided representative land cover for two time spans of tornadogenesis points:
2005–08 for the 2006 dataset and 2009–14 for the 2011 NLCD dataset.

The MODIS collection 5 level 3 annual 500-m land-cover composite product,
MCD12Q1, is derived from the MODIS sensor aboard the Aqua and Terra satellites,
with class accuracy between 72% and 75%, provided a medium-resolution land-cover
representation (Friedl et al. 2010; Strahler et al. 1999; Friedl and Sulla-Menashe 2015).
MODIS land-cover data for 2006 and 2011 were acquired from the Land Processes
Distributed Active Archive Center (LP DAAC) to align with the NLCD land-cover
data. The IGBP classification scheme was selected because it was developed to rep-
resent land classes most useful across modeling disciplines Strahler et al. (1999).

The Noah LSM combines remote sensing measurements and z0 values associated
with the 17-class MODIS IGBP or 24-class USGS land-cover classification schemes.
The NLCD land-cover data were reclassified to match the 24 USGS land-cover
classes, with the exception of the urban areas. The NLCD urban land-cover classes
capture four development classes that vary widely in z0: open space, low intensity,
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medium intensity, and high intensity. Because z0 values for these classes are not part of
the Noah LSM USGS classification scheme, associated z0 value ranges were deter-
mined from the Vickery et al. (2006) and Simpson et al. (2012) predefined parameters.

3.3. NDVI and GVF data, analysis, and corrections

The vegetation of the study area was represented using normalized difference
vegetation index (NDVI) datasets derived from two satellite instruments. The Terra
MODIS, version 3, 500-mMOD13A1 product (Didan 2015) was acquired from the
LP DAAC for the full years of 2006 and 2011. This NDVI data layer contains an
accuracy within 60.025 and was quality controlled to remove pixels under clouds
and cloud shadow that cause brightening and darken effects, respectively, reducing
the accuracy of atmospheric correction and computed NDVI values (Huete et al.
1999; MODIS Land Team 2016; Zhu and Woodcock 2012).

The U.S. Geological Survey (USGS) Landsat Surface Reflectance Level-2 Science
Product data (USGS 2011, 2006) were acquired from the Earth Resources Observation
and Science (EROS) Center Science Processing Architecture (ESPA) interface (USGS
2019a,b). For this data product, the 6S radiative transfer model (Vermote 1997) was
applied to Landsat 4–7 retrievals, from which NDVI and quality assessment (QA)
bands are derived. For this study, 286 Landsat 7 ETM1 and Landsat 5 TM images
with 60% cloud clover or less were acquired for 2006 and 2011. The NDVI data were
quality controlled using the QA bands to remove contaminated pixels caused by
oversaturation, cloud cover, and cloud shadow established by Zhu and Woodcock
(2012), Arvidson et al. (2001), Arvidson et al. (2000), and Simpson and Stitt (1998).

The Noah LSM uses green vegetation fraction (GVF) to quantify and control
water and energy transfer between the land surface and the atmosphere and capture
seasonal variations in z0 over vegetated areas (Zeng et al. 2000). To determine z0 of
a particular area, the GVF is determined using

GVF5
NDVI2NDVImin

NDVImax2NDVImin
, (4)

where NDVI is the NDVI value of a specific pixel at a point in time, NDVImin is the
constant minimum NDVI value for bare soil (0.01), and NDVImax is the maximum
NDVI for a land-cover class over a period of time.

A temporal analysis of the NDVI values was performed to determine the
NDVImax for USGS and IGBP land-cover types in the study area. Two full years of
MODIS and Landsat NDVI data were analyzed to ensure values captured vege-
tative ranges across multiple years. NDVI pixel values for each land-cover class
were extracted for the study area to which a histogram thresholding method by
Zeng et al. (2000) and Gutman and Ignatov (1998) was applied to account for pixel
contamination near land-cover -class boundaries. The NDVImax values from the
sample were selected as follows: 90th-percentile value for sparsely vegetated areas
(e.g., urban and bare soil) and the 75th-percentile value for vegetated areas. The
highest NDVImax values across 2006 and 2011 are shown in Table 1.

The NDVI variable in Equation (4) was sampled from NDVI values for the
climatological peak spring tornado season for north Alabama (March–May).
Representative spring layers for the Landsat and MODIS NDVI were generated
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for 2006 and 2011 by determining the maximum NDVI for each pixel across the
spring months. The maximum spring NDVI provided the best NDVI represen-
tation for the study area that corrected striping from the 2003 Landsat 7 ETM1
sensor scan line corrector failure without interpolating Landsat retrievals. Once
the NDVI was determined, GVF was calculated for 2006 and 2011 shown in
Figure 6.

3.4. Noah LSM parameterization and z0 calculations

The Noah LSM uses two types of roughness values to account for the heat
transfer Z0h between the land surface and low-tropospheric levels, and momentum
transfer using a momentum roughness length Z0m. This study uses the generalized
version of the Monin–Obukhov similarity theory that assumes Z0h 5 Z0m and
implements the Z0m parameterization scheme, from here on out we refer to
roughness as Z0m (Brutsaert 1982; Niu et al. 2011). The Chen and Zhang (2009)
implementation of the Noah LSM Z0m parameterizations scheme was selected
since it was found to consistently perform better over changing surface conditions
and seasons (Zheng et al. 2014). This approach uses the aforementioned Z0m
lookup table values (Table 1) and the GVF to solve for Z0m:

Table 1. Lookup table for Z0m listing parameters used to determine GVF and Z0m for
the MODIS and Landsat data.

Mapped USGS land
cover Z0m,min Z0m,max NDVImax IGBP land cover Z0m,min Z0m,max NDVImax

Water bodies 0.0001 0.0001 0.631 Water 0.0001 0.0001 0.895
Urban: developed,
open space

0.03 0.03 0.884 Evergreen needleleaf
forest

0.5 0.5 0.912

Urban: developed, low
intensity

0.15 0.15 0.821 Evergreen broadleaf
forest

0.5 0.5 0.902

Urban: developed,
medium intensity

0.35 0.35 0.721 Deciduous needleleaf
forest

0.5 0.5 0.948

Urban: developed, high
intensity

0.5 0.5 0.593 Deciduous broadleaf
forest

0.5 0.5 0.948

Barren or sparsely
vegetated

0.01 0.01 0.858 Mixed forest 0.2 0.5 0.953

Deciduous broadleaf/
needleleaf forest

0.5 0.5 0.921 Closed shrublands 0.01 0.05 0.895

Evergreen broadleaf/
needleleaf forest

0.5 0.5 0.892 Open shrublands 0.01 0.06 0.714

Mixed forest 0.2 0.5 0.906 Woody savannas 0.01 0.05 0.940
Shrubland 0.01 0.05 0.914 Savannas 0.15 0.15 0.900
Grassland 0.1 0.12 0.877 Grasslands 0.1 0.12 0.920
Dryland cropland and
pasture

0.05 0.15 0.862 Permanent wetlands 0.3 0.3 0.931

Croplands (MODIS) 0.05 0.15 0.889 Croplands 0.05 0.15 0.939
Wooded wetland 0.4 0.4 0.914 Urban and built-up 0.5 0.5 0.914
Herbaceous wetland 0.2 0.2 0.872 Cropland/natural

vegetation mosaic
0.05 0.14 0.942

Barren or sparsely
vegetated

0.01 0.01 0.810
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Z0m5 (12GVF) Z0m,min1GVFZ0m,max, (5)

where GVF is the spring layers calculated in the previous section, Z0m,min is the
minimum seasonal roughness length value in meters, and Z0m,max is the maximum
seasonal roughness length value in meters. This equation was applied to generate
four corresponding Z0m layers based on each pixel’s land-cover class using the
GVF and the variables outlined in Table 1. The final Z0m layers for the 2006 and
2011 Landsat and MODIS data are shown in Figure 7.

3.5. Spatial analysis architecture

A two-part methodology was developed to assess spatial relationships between
locations of tornadogenesis and surrounding Z0m variation and patterns. A gridcell

Figure 6. Derived green vegetation fraction (GVF) layers for March–May 2006 and
2011 showing (top) MODIS and (bottom) Landsat.
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analysis was conducted to acquire a qualitative overview of the variation in Z0m
observed by the MODIS and Landsat instruments to evaluate patterns captured
across different satellite instruments on equal-area grids. To quantify the observed
patterns, a quadrant pattern analysis was used to determine the significance of the
observed patterns. ArcGIS was used in both these analyses to construct the grids
and quadrants and perform the geospatial statistics.

3.5.1. Gridcell analysis

An analytical constraint was set to focus this investigation on local mesoscale
features surrounding each tornadogenesis, or tornado-track initiation point loca-
tion. Mesoscale interactions occur within a 2–2000-km horizontal scale; therefore,
anything below this threshold is considered microscale (Orlanski 1975). A 4-km
threshold surrounding each tornadogenesis point was selected based on 4 km being

Figure 7. (top) MODIS- and (bottom) Landsat-based Z0m for March–May 2006 and
2011.
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the coarsest spatial resolution used in convection allowing mesoscale models such
as the WRF Nonhydrostatic Mesoscale Model and Advanced Research WRF, and
this threshold being close to the approximate microscale where the proposed tor-
nadogenesis processes occur (Markowski and Richardson 2009). The minimum
gridcell dimension was set to 500m, the spatial resolution of the MODIS data,
enabling the comparison of the different resolution data across equal spatial scales.
Grids with 500m 3 500m cells within an 8 km 3 8 km area surrounding each
tornadogenesis point were created and oriented along each tornadogenesis point
associated tornado track bearing direction u, which is used as a proxy for surface-
level flow recognizing there is a 458 offset between surface flow and tornado-track
orientation. Figure 8 provides a schematic of one of the 125 resultant grids, where
the tornadogenesis location is shown as the black dot, surrounded by 256 grid cells
within a 64-km2 area. For each tornadogenesis point grid, the Z0m pixel values
falling within each grid cell were averaged for the Landsat and MODIS data. These
125 MODIS and 125 Landsat grids were then averaged across the sample for all
corresponding gridcell locations to generate comparable results for the two Z0m
datasets outlined in the proceeding section.

3.5.2. Quadrant pattern analysis

Square quadrants surrounding each tornadogenesis point were separately created
(in addition to the grids) using the same 500-m intervals (Dr and Dd shown in
Figure 9) oriented along u from 500 to 4000m in size. To generate the quadrants,
the coordinates of two points along the u axis were determined at varying along-
track distances from the tornadogenesis location at Dd ahead of and before the
location. A schematic of this process is shown in Figure 9: the point of tornado-
genesis is centered, surrounded by a point forward (after) the tornadogenesis lo-
cation and a point backward (before) tornadogenesis oriented along u. From these
lines and using the same 500-m intervals, square quadrants were created along each
axis to a cross-track distance r, two before the tornadogenesis point (backward-left
and backward-right quadrants), and two after tornadogenesis (forward-left and
forward-right quadrant). A UTM projection was critical for determining the co-
ordinate locations used to construct the quadrants because it offers a higher pre-
cision than degree-based projections, which reduced the resultant offset between
the orientation of the constructed quadrant and the original tornado track. Similar
to the grid analysis, for each quadrant the mean Z0m values of pixels falling within
each of the areas were sampled across all tornadogenesis locations and repeated
across the four Z0m layers for each variable quadrant size.

3.5.3. Quadrant pattern groups

Separately, a pattern analysis was used to quantify spatial patterns and variation
observed in the Z0m grid analysis to determine relative differences in Z0m between
six predefined pattern groups, whether these differences were significant, and if
significant, the relevant spatial scales they differ. The mean Z0m values collected
for each quadrant were combined to test six possible quadrant patterns combina-
tions surrounding the tornadogenesis locations shown in Figure 10. For each pat-
tern combination, the average quadrant values of Z0m were separated into two
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groups to compare the relative difference in the mean quadrant Z0m for each pattern
combination where gray represents group A and black represents group B. The
quadrants were combined into two pattern groups by averaging the per-quadrant
mean Z0m within each pattern group. The resultant mean values of Z0m for each
pattern group were differenced across the 125 tornadogenesis points and spatial
scales. Eight iterations of pattern differences were run for each of the six patterns
for each tornadogenesis point, generating 1000 data values for each pattern group.

For each pattern and quadrant spatial scale, the collected pattern group differ-
ence values were plotted using the kernel density function (KDF) based on Parzen
(1962) and Rosenblatt (1956):

fh5
1

n

Pn
i51

Kh(x2 xi)5
1

nh

Pn
i51

K
x2 xi
h

, (6)

where K represents the kernel, xi is the univariate independent variable, h is the
smoothing parameter called the bandwidth, n represents the sample size, and Kh is

Figure 8. Example schematic showing the generated u-oriented fishnets surround-
ing tornadogenesis points. The black points indicate tornadogenesis lo-
cations, the solid black lines indicate the observed tornado tracks, and
the dashed black lines indicate the north–south direction. The angle be-
tween the solid and dashed black lines is u. The tornado tracks and re-
spective fishnets are overlaid on the 2011 Landsat Z0m layer.
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the scaled kernel. Section 4 will discuss the results of both the grid and the quadrant
pattern analyses.

4. Results and discussion

4.1. Grid analysis results

The grid analysis enabled a qualitative assessment of spatial variations in Z0m
across two spatial scales. For each grid cell, the average Z0m pixel value was
extracted and averaged across the sample for MODIS and Landsat independently,
shown in Figure 11, where the location of tornadogenesis (black inverted trian-
gle), u (solid arrow), and surface flow (dashed arrow) are depicted. The grid
analysis revealed the mean Z0m for Landsat to be higher than MODIS with value
ranges from 0.180 to 0.228m and 0.128 to 0.176m, respectively; however, the
range for each dataset is similar, falling near 0.05m. The spatial variation in Z0m
appears similar for each sample with lower Z0m located in the forward-right
quadrants and higher Z0m located in the other three quadrants. Most notable are
the highest Z0m located within the backward quadrants, primarily the backward
right and along the bearing axis. The differences between the MODIS and
Landsat representations of Z0m are resultant from the spatial resolutions, where
the MODIS representation shows larger-scale features, and more variation in Z0m
is observed for the Landsat data across the same general pattern. A gradient in
Z0m is shown to exist in the Landsat and MODIS layers perpendicular to the
surface-layer wind. The tornadogenesis points are also very close to the minimum
in Z0m supporting the hypothesis in that a horizontal gradient exists with the
potential of generating positive values of the vertical components of the 3D
vorticity vector that may aid in tornadogenesis. This is consistent with the con-
ceptual model shown in Figure 2.

Figure 9. Quadrants around each tornadogenesis location. Each quadrant was con-
structed on the corresponding tornado track u as a proxy for surface flow.
Quadrants were constructed along lines at variable dimensions r and d.
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4.2. Quadrant pattern analysis results

The KDF distributions of each pattern group difference for each tornadogenesis
location were computed independently for the Landsat and MODIS data to
quantify observations made from the grid analysis. Plots were generated that depict
a series of distribution lines, each representative of the pattern group difference
values calculated across the 125 tornadogenesis locations, eight spatial scales, and
the six pattern groups.

4.2.1. Landsat results

The Landsat KDF plots (Figure 12) reveal the distribution of pattern group
difference values to become more widely distributed as the quadrant size in-
creases. This variation likely results from the larger area sampled from which
more Z0m pixel values are averaged yielding greater variability and wider
distributions. In addition, noticeable skewness in both larger and smaller
quadrant scales are observed across several of the pattern groups, most notable
in 1, 2, 3, and 6. This relative skewness implies larger differences in Z0m be-
tween pattern groups across certain spatial scales further indicating horizontal
gradients in Z0m.

The mean, standard deviation, skewness, and kurtosis were computed to further
investigate the statistical significance of the KDF pattern group difference obser-
vations. A one-sample two-tailed t test was performed to identify pattern groups
meeting a 95% significance level with a null hypothesis that there is no difference
between the two pattern groups, or that the resulting Z0m difference is zero (im-
plying a homogeneous flat surface). Otherwise, those that test as significant imply
that a notable horizontal gradient exists between the two pattern groups. The
statistical results for Landsat are provided in Table 2 where boldface values indi-
cate statistical significance.

Figure 10. The six tested quadrant-pattern combinations in the pattern analysis.
Gray indicates group A, and black indicates group B. To assess the dif-
ference in mean Z0m between groups A and B, the difference between
the two groups was determined for each of the six patterns. The re-
spective mean Z0m for each quadrant was averaged across quadrant
groups to determine a quadrant group difference value.
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The two-tailed t test revealed two pattern groups for the Landsat data with p
values meeting the 95% significance level; pattern group 1 at 500m had a p value
of 0.047 and Pattern group 6 at 4000m the p value was 0.045. Further examination
reveals that the distribution of values is skewed toward the positive end, meaning
quadrant group A has a higher mean Z0m value than quadrant group B. In each of

Figure 12. Landsat Z0m KDF plots of the pattern group difference for EF0–EF1
tornadoes.

Figure 11. Grid analysis results performed on (left) Landsat and (right) MODIS data
for EF0–EF1 tornadoes. The black inverted triangle identifies the torna-
dogenesis location, the solid arrow represents u, and the dashed arrow is
the direction of surface flow.
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these pattern groups, group A is located to the left of the tornado track bearing
direction u, which was observed to be significantly higher for these specific spatial
scales and pattern groups, hence rejecting that null hypothesis that a homogeneous
surface surrounds the tornadogenesis locations. This result supports the assessed
hypothesis revealing Z0m gradients conducive for the formation of positive vertical

Table 2. Landsat pattern group difference statistics table for EF0–EF1 tornadoes.
Boldface values indicate statistical significance at the 95% level using a one-
sample two-tailed t test.

Statistic Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Scale (m)

Mean 0.007 20.004 0.001 20.003 0.002 0.005 500
Std dev 0.042 0.045 0.043 0.046 0.041 0.040 500
Skewness 0.132 20.217 20.634 20.860 0.508 0.321 500
Kurtosis 1.645 0.911 0.990 2.268 2.688 1.433 500
p value 0.047 0.217 0.880 0.459 0.612 0.092 500

Mean 20.001 20.001 0.003 20.001 20.001 0.001 1000
Std dev 0.029 0.032 0.028 0.034 0.030 0.028 1000
Skewness 20.199 20.485 21.026 21.423 0.969 20.181 1000
Kurtosis 1.739 1.916 4.156 6.945 5.137 2.510 1000
p value 0.683 0.728 0.194 0.703 0.566 0.517 1000

Mean 20.001 0.000 0.001 0.000 20.001 0.001 1500
Std dev 0.027 0.024 0.027 0.028 0.026 0.024 1500
Skewness 0.140 20.306 21.423 21.551 0.805 20.186 1500
Kurtosis 2.723 2.245 4.305 7.675 6.099 2.537 1500
p value 0.556 0.951 0.643 0.856 0.612 0.909 1500

Mean 0.000 20.002 0.000 0.002 20.001 0.000 2000
Std dev 0.022 0.020 0.023 0.024 0.021 0.022 2000
Skewness 0.018 20.358 20.655 20.864 20.554 0.305 2000
Kurtosis 4.385 1.335 2.762 3.204 4.601 4.035 2000
p value 0.946 0.256 0.916 0.366 0.374 0.974 2000

Mean 20.001 20.002 0.002 0.001 20.002 0.001 2500
Std dev 0.021 0.018 0.019 0.022 0.018 0.029 2500
Skewness 20.981 20.007 20.257 20.601 21.046 20.035 2500
Kurtosis 3.551 0.811 2.634 3.244 5.126 3.844 2500
p value 0.478 0.148 0.153 0.528 0.087 0.631 2500

Mean 20.001 20.002 0.001 0.002 20.002 0.000 3000
Std dev 0.023 0.018 0.018 0.022 0.019 0.021 3000
Skewness 21.252 20.349 20.225 20.211 21.652 20.150 3000
Kurtosis 3.318 0.618 2.917 2.905 6.182 3.753 3000
p value 0.576 0.275 0.432 0.415 0.193 0.960 3000

Mean 20.004 20.002 0.004 0.002 20.005 0.000 3500
Std dev 0.025 0.024 0.023 0.025 0.025 0.021 3500
Skewness 20.880 21.271 2.072 0.776 22.244 20.641 3500
Kurtosis 0.539 4.269 6.290 3.533 7.339 1.775 3500
p value 0.258 0.591 0.217 0.613 0.222 0.990 3500

Mean 0.012 20.015 0.006 20.004 20.002 0.014 4000
Std dev 0.052 0.051 0.054 0.057 0.046 0.045 4000
Skewness 1.008 20.342 20.059 20.575 0.173 0.246 4000
Kurtosis 4.276 20.311 1.195 0.787 20.235 0.712 4000
p value 0.114 0.056 0.463 0.674 0.791 0.045 4000
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vorticity to form near the surface, and consistent with the findings from the grid
analysis (Figure 11).

4.2.2. MODIS results

The MODIS KDF plots in Figure 13 reveal wider distributions than the Landsat
plots and less variation across spatial scales. The tail end of most distributions
reveal a smaller secondary peak for all patterns, however, the KDF distributions
maximums remain centered around zero. Less variability between spatial scale and
pattern groups can be attributed to the lower resolution of the MODIS data, which
captured larger-scale features in the grid analysis compared to Landsat.

The two-tailed t test performed on the MODIS data did not reveal any pattern
combinations that met the 95% significance level in Table 3. These results were
expected given the lack of qualitative skewness in the KDF plots and reveal the
500-m MODIS data likely have a spatial resolution too coarse to study Z0m vari-
ation within an 8 km 3 8 km area, failing to reject the null hypothesis.

4.3. Discussion of results

The grid and quadrant pattern analyses were performed to qualitatively and
quantitatively evaluate horizontal variation in Z0m, and statistically identify the
spatial patterns and scales with significant differences between pattern groups.
The grid analysis revealed a decrease in Z0m within the forward-right quadrant in
the MODIS and Landsat data, with higher Z0m in the backward quadrants. These
results suggest that across the sample of EF0–EF1 tornadogenesis locations, there
may be gradients in Z0m conducive for the formation of positive vertical vorticity

Figure 13. MODIS Z0m KDF plots of the pattern group difference for EF0–EF1 torna-
does.
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near the surface. Building on the grid analysis, the quadrant pattern analysis was
developed to evaluate six quadrant pattern group differences across the MODIS
and Landsat datasets and within varying areas surrounding each tornadogenesis
location. To accomplish this, KDF plots for each pattern group and spatial scale
were generated, followed by a series of statistics to test for significance. The
resultant Landsat KDF plots revealed relative skewness between pattern differ-
ence groups; however, as the spatial scale increased, less skewness and wider

Table 3. MODIS pattern group difference statistics table for EF0–EF1 tornadoes.

Statistic Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Scale (m)

Mean 0.002 0.000 0.004 20.006 0.001 0.004 500
Std dev 0.051 0.063 0.055 0.055 0.055 0.045 500
Skewness 0.201 0.347 0.241 20.210 0.750 20.513 500
Kurtosis 0.660 1.346 2.080 1.516 3.140 1.678 500
p value 0.603 0.962 0.404 0.207 0.748 0.230 500

Mean 20.001 20.007 0.004 0.003 20.006 0.003 1000
Std dev 0.062 0.058 0.063 0.057 0.059 0.052 1000
Skewness 0.527 0.137 0.432 0.004 20.040 20.024 1000
Kurtosis 1.733 0.554 0.222 0.947 0.967 0.905 1000
p value 0.869 0.138 0.407 0.451 0.225 0.545 1000

Mean 20.004 0.003 20.001 0.002 20.001 20.003 1500
Std dev 0.057 0.053 0.056 0.054 0.054 0.048 1500
Skewness 20.208 0.011 0.158 20.309 0.131 20.216 1500
Kurtosis 1.116 0.440 0.577 1.350 0.912 0.616 1500
p value 0.415 0.478 0.844 0.713 0.902 0.370 1500

Mean 20.003 0.002 20.001 0.002 20.001 20.003 2000
Std dev 0.058 0.051 0.053 0.054 0.053 0.059 2000
Skewness 20.475 20.109 0.150 20.401 0.326 20.206 2000
Kurtosis 1.090 0.199 0.828 0.652 1.018 1.035 2000
p value 0.485 0.641 9.883 0.653 0.815 0.468 2000

Mean 20.005 20.001 0.004 0.003 20.005 20.001 2500
Std dev 0.058 0.051 0.051 0.058 0.054 0.052 2500
Skewness 20.108 20.263 0.069 20.589 0.044 20.013 2500
Kurtosis 0.023 20.232 0.375 0.333 20.256 0.541 2500
p value 0.251 0.743 0.321 0.569 0.246 0.814 2500

Mean 20.005 0.001 0.007 20.002 20.003 0.001 3000
Std dev 0.057 0.049 0.053 0.052 0.049 0.053 3000
Skewness 20.276 20.060 0.061 20.621 0.067 0.178 3000
Kurtosis 20.073 20.179 0.343 0.514 0.595 0.907 3000
p value 0.328 0.858 0.209 0.697 0.476 0.870 3000

Mean 20.014 0.003 0.012 20.001 20.008 20.002 3500
Std dev 0.056 0.046 0.055 0.054 0.046 0.052 3500
Skewness 20.514 20.125 0.267 20.824 20.228 20.287 3500
Kurtosis 0.386 20.202 0.603 0.932 0.727 0.380 3500
p value 0.108 0.698 0.160 0.939 0.230 0.844 3500

Mean 20.009 0.011 20.004 0.002 0.002 20.009 4000
Std dev 0.039 0.067 0.048 0.055 0.050 0.046 4000
Skewness 20.673 0.733 0.661 0.829 0.822 21.356 4000
Kurtosis 3.292 3.056 4.009 3.353 3.507 3.472 4000
p value 0.142 0.283 0.585 0.820 0.837 0.177 4000
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distributions were observed. In comparison, the MODIS KDF plots revealed wider
distributions than Landsat with little change in the distribution width as the
quadrant size increased. In addition, secondary peaks in MODIS KDF values were
observed; however, the maximum of each curve was centered on zero with little
relative skewness observed. The two-tailed t test was performed using a 95%
significance level to identify significant differences between the pattern groups
tested. The test revealed two pattern groups and spatial scales with significant
differences in Z0m for the Landsat data; however, the MODIS statistics were unable
to replicate these findings. The Landsat test identified pattern group 1 at 500m and
pattern group 6 at 4000m to have value distributions skewed toward the positive
end, meaning quadrant group A, on the left side of the flow, has a higher mean Z0m
value than quadrant group B. These Landsat results found statistically significant
differences in Z0m, supporting the grid analysis, and finding a horizontal gradient
in surface roughness. This finding supports the theory that horizontal surface
roughness gradients coinciding with weak-intensity tornadoes exist that may in-
fluence the vertical component of the 3D vorticity vector near the surface. More
work is needed to investigate at what magnitude these horizontal gradients influ-
ence the 3D vorticity vector and tornadogenesis. Results indicate that within an
8 km 3 8 km area surrounding each tornadogenesis location, Landsat was able to
detect more variability and smaller-scale detail because of its higher spatial reso-
lution. The MODIS data proved useful for identifying larger-scale variation in Z0m;
however, the variation was not statistically significant at smaller scales where
resultant KDF distributions were found to be similar across the spatial scales and
patterns tested. For future work, the area surrounding each tornadogenesis location
should be expanded to assess results across larger grid and quadrant areas that fall
within the mesoscale.

Errors in the outlined findings may result from inaccuracies in the data and
methodologies implemented. First, the Noah LSM parameterization scheme may
result in errors in the resultant Z0m layers given its dependence on a land-class-
based lookup table. In addition, the accuracy of the NDVI and land-cover classes
could affect the Z0m layer derived because of errors in the land-cover classification
schemes, and oversaturation of NDVI values in highly vegetated areas. In final, it
must be noted that the tornado dataset used does not represent all events that
occurred within the study area given is it reliance on human reports, thus these data
are skewed toward more populated areas with human observations and access,
keeping in mind that errors in the location of the actual tornadogenesis point exist,
but are unknown. Future efforts should test and compare results from alternative
Z0m parameterization and remote sensing approaches. In addition, it must be noted
that tornadoes are highly dynamic events that rely on atmospheric as well as other
environmental and land surface parameters. This first-order analysis was con-
ducted to identify horizontal gradients on the land surface without considering the
other atmospheric dynamics at hand. Further research is needed to incorporate
more detailed modeling efforts and case study analysis to expand on this work.

5. Conclusions
The goal of this study was to determine whether horizontal gradients in land

surface roughness exist surrounding locations of tornadogenesis for weak (EF0–EF1)
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tornadoes. This study found evidence of statistically significant horizontal gradi-
ents in Z0m surrounding EF0–EF1 tornadogenesis locations. Observations acquired
from Landsat at 30-m spatial resolution revealed statistically significant horizontal
gradients Z0m that may be favorable for supporting tornadogenesis. It is possible
that the weaker tornadoes occur in environments that are marginally supportive of
tornadogenesis and that the roughness gradient provides the forcing required for
tornadogenesis in such cases. Future studies should address the physical processes
using idealized numerical simulations. Additional research is needed to test the
developed methodology across other geographic regions to validate this study’s
findings in modeling efforts. Other remote sensing and modeling schemes should
be incorporated into further analysis to ensure land surface variation is captured
effectively. Finally, a primarily outcome of this work was the need to expand the
grid and quadrant area sampled around each tornadogenesis location in order to
investigate larger-scale features captured by coarser-resolution data. These results
present a case to further investigate the effect variation in land surface features has
on tornado dynamics. Increased understanding of the interactions between the
atmosphere and land surface will improve weather forecasting and modeling and
may, in the future, lead to tornado hazard mapping techniques to aid in disaster
management efforts.
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